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A statistical thermodynamics theory of a polydisperse polymer based on a lattice model of a fluid is 
formulated. The pure polydisperse polymer is completely characterized by three scale factors and the 
distribution law of the system. The equation of state does not satisfy a simple corresponding state principle, 
except for the polymer fluid with sufficiently high molecular weight. 
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Introduction 

For all the theories of polymer solutions up to now, 
e.g. Flory-Huggins ~ solution theory, the equation-of- 
state theory 2-9 and other theories 1°'~ 1, the polymer has 
always been taken as a monodisperse fluid. When a 
polydisperse polymer system is considered, a correction 
factor 6 is introduced to reduce it into the monodisperse 
result. In this paper, a polymer is regarded as a 
polydisperse fluid from the outset and the polymer fluid 
is dealt with by the approach of statistical thermo- 
dynamics on the basis of a lattice fluid. 

Model description and results 

Consider a polydisperse linear polymer system, 
consisting of a succession of molecules with different 
chain lengths and vacant lattice sites (holes). In this 
system, there are N1 molecules each of which occupies 
r 1 sites ( r :mer ) ,  N 2 molecules each of which occupies r 2 
sites (r2-mer) . . . . .  Nk molecules each of which occupies 
r k sites (rk-mer) and N O vacant lattice sites (holes), and 
the total number of molecules equals N where 

k 

N =  ~ Ni (1) 
i = 1  

The total number of lattice sites for a system of 
N~ rl-mers , N 2 r/-mers . . . . .  Nk rk-mers and N o empty 
sites (holes) is 

k 

N , =  N o+  ~ riN i=  N o + rN (2) 
i = 1  

where 
k k 

r = ~" r iNi /N = ~ xir i (3) 
i = 1  i = 1  

xi = N i / N  (4) 

The coordination number of the lattice is z. For a linear 
polymer, each r :mer  is surrounded by q :  nearest 
non-bonded neighbours where 

q i  z = r i ( z  - -  2) + 2 (5) 

where qi is the effective chain length, where each mer is 
surrounded by z nearest non-bonded neighbours in a 
qi-mer. 

The total number of nearest neighbour pairs in the 
system is (z/2) N,. Only (z/2) Nq are non-bonded pairs 
where 

Nq = N O + ~ qiNi (6) 
i = l  

A r~-mer is characterized 7 by a symmetry number tr~ and 
is also characterized 7 by a 'flexibility parameter'  6v 

According to Guggenheim's derivation lz-14, the 
number of configurations available to the system is 

\ 0 " 1 ,  ] \ 0 " 2 .  ] \ O - k /  k \ N , ! )  (7) 
l-[ Nil 

i = 0  

As a result of the 'Flory approximation'15, we have 

l i m Q = \ f o o J  ~ (8) .-~oo ,=xk f l , /  

where 

O)i = f i l r i / t 7  i e "'-1 (9) 

fo = No~N, (lO) 

f ,  = riN,/Xr ( 1 1 ) 

where fo and f~ are the empty and occupied site fractions, 
respectively. 

In this paper, all calculations will be based on equation 
(8). In addition, the following assumptions will be made : 
the flexibility parameter 3~ is independent of temperature 
and pressure; the close-packed volume r~v* of a molecule 
is independent of temperature and pressure. 

The close-packed volume of a mer is v*. Then, the 
total close-packed volume of the system is 

k 

V* = ~ r~Niv* = rNv* (12) 
i = 1  

If the volume associated with an empty lattice site (a 
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hole) is also equal to v*, the volume of the system is 

V =  Nrv* = V* / f  (13) 

where 
k k 

f = Z riNi/N, = ~ fi (14) 
i=1 i = l  

The lattice energy (attractive) that depends only on 
nearest neighbour interactions is 

E = - ( z / 2 ) N , ~ p ( i , j ) e ,  i (15) 
i j 

where e~j is the pair interaction energy between 
components i and j, and 

:# 0 (non-bondedmer-merinteract ions)  (16) 
e i i =  0 (other interactions) 

If we assume random mixing of holes and molecules, 
then the probability of a non-bonded mer-mer  
interaction x2-1. is 

p(mer, mer )=( ,=~q ,Ni )Z / /NqN,  (17) 

or in the large z limit becomes 

lim p(mer, mer) = riNffN, = f 2  (18) 
z--* oo i=1 

Thus, the lattice energy is 

E = - N , ( z e / 2 ) f 2 = - r N e * f = - r N e * ( V * / V )  (19) 

where e is the non-bonded mer-mer  interaction energy 
and 

e* = ze/2 (20) 

is the total interaction energy per mer. 
The partition function of this system is 

Z ( T , P ) =  ~ f t e x p [ - f l ( E  + PV)] (21) 
No = 0 

and the Gibbs free energy is equal to 

G= - k T l n Z ( T , P ) -  E + P V - k T l n Q  (22) 

Using equations (8), (13) and (19), G can be expressed 
as a dimensionless variable: 

Cr = G/rN~* 

[ l 
= - 1 5 + P ~ + 7 "  ( ~ - l ) l n ( 1 - 1 5 ) + - l n 1 5  

r 

(q~i) l n ( q ~ / ]  (23) 

where 

q9 i = riNi/rN (24) 

7"= T/T* T* = e*/k (25) 

P = P/P* P* = e*/v* (26) 

= 1/15 = V/V* (27) 

The minimum value of the free energy is found in the 
usual way : 

8~vG'- LP = 0 (28) 

which yields 

152+ p +  ~[ln(1 _ 15) + (1 _ ;)151 = 0 (29) 

when r ~ co, the equation of state becomes 

152 + 13 + T[ln(1 - IS) + 15] = 0 (30) 

Thus, the polymer fluid of sufficiently high molecular 
weight satisfies a simple corresponding state principle. 

If the polymer fluid is monodisperse, i.e. ri = r, 61 = 3, 
a~ = a, ~o i = 1, and the summation of i is deprived, then 
we have 

(~ =--15 + P~ + T[ (~  - 1)In(1 - 15) + lr ln(15/a~)] 

(31) 

and 

F / t \  7 
152+ /~..~_ 7. [ in(1  _ 15) + ~1 _ r)151 = 0 (32) 

where r is a constant and the number of sites which a 
r-mer occupies and ~o = rr/a e'-  1. Thus, this theory can 
be reduced to the pure lattice fluid theory of Sanchez 
and Lacombe 7 when the polymer fluid is monodisperse. 

From the above discussion, it can be shown that our 
theory is a general theory and the pure lattice fluid theory 
of Sanchez and Lacombe is only a special case of 
our theory. 
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