Lijia An, Rongtang Ma, Xichun Kou and Xinyi Tang

Department of Chemistry, Jilin University, Changchun 130023, P.R. China

and Bingzheng Jiang

Changchun Institute of Applied Chemistry, Academia Sinica, Changchun 130022, P.R. China (Received 7 January 1992)

A statistical thermodynamics theory of a polydisperse polymer based on a lattice model of a fluid is formulated. The pure polydisperse polymer is completely characterized by three scale factors and the distribution law of the system. The equation of state does not satisfy a simple corresponding state principle, except for the polymer fluid with sufficiently high molecular weight.

(Keywords: **statistical thermodynamics; pure polymer; lattice fluid; equation of state)**

Introduction

For all the theories of polymer solutions up to now, e.g. Flory-Huggins¹ solution theory, the equation-ofstate theory²⁻⁹ and other theories^{10,11}, the polymer has always been taken as a monodisperse fluid. When a polydisperse polymer system is considered, a correction factor 6 is introduced to reduce it into the monodisperse result. In this paper, a polymer is regarded as a polydisperse fluid from the outset and the polymer fluid is dealt with by the approach of statistical thermodynamics on the basis of a lattice fluid.

Model description and results

Consider a polydisperse linear polymer system, consisting of a succession of molecules with different chain lengths and vacant lattice sites (holes). In this system, there are N_1 molecules each of which occupies r_1 sites (r_1 -mer), N_2 molecules each of which occupies r_2 sites $(r_2$ -mer), ..., N_k molecules each of which occupies r_k sites (r_k -mer) and N_0 vacant lattice sites (holes), and the total number of molecules equals N where

$$
N = \sum_{i=1}^{k} N_i \tag{1}
$$

The total number of lattice sites for a system of N_1 r₁-mers, N_2 r₂-mers, ..., N_k r_k-mers and N_0 empty sites (holes) is

$$
N_r = N_0 + \sum_{i=1}^{k} r_i N_i = N_0 + rN \tag{2}
$$

where

$$
r = \sum_{i=1}^{k} r_i N_i / N = \sum_{i=1}^{k} x_i r_i
$$
 (3)

$$
x_i = N_i/N \tag{4}
$$

The coordination number of the lattice is z. For a linear polymer, each r_i -mer is surrounded by $q_i z$ nearest non-bonded neighbours where

$$
q_i z = r_i (z - 2) + 2 \tag{5}
$$

0032-3861/92/132855-02
© 1992 Butterworth-Heinemann Ltd.

where q_i is the effective chain length, where each mer is surrounded by z nearest non-bonded neighbours in a q_i -mer.

The total number of nearest neighbour pairs in the system is $(z/2)$ N_r. Only $(z/2)$ N_q are non-bonded pairs where

$$
N_q = N_0 + \sum_{i=1}^{k} q_i N_i
$$
 (6)

A r_i -mer is characterized⁷ by a symmetry number σ_i and is also characterized⁷ by a 'flexibility parameter' δ_i .

According to Guggenheim's derivation¹²⁻¹⁴, the number of configurations available to the system is

$$
\Omega = \left(\frac{\delta_1}{\sigma_1}\right)^{N_1} \left(\frac{\delta_2}{\sigma_2}\right)^{N_2} \dots \left(\frac{\delta_k}{\sigma_k}\right)^{N_k} \frac{N_r!}{\prod\limits_{i=0}^k N_i!} \left(\frac{N_q!}{N_r!}\right)^{z/2} \quad (7)
$$

As a result of the 'Flory approximation'¹⁵, we have

$$
\lim_{z \to \infty} \Omega = \left(\frac{1}{f_0}\right)^{N_0} \prod_{i=1}^k \left(\frac{\omega_i}{f_i}\right)^{N_i} \tag{8}
$$

where

$$
\omega_i = \delta_i r_i / \sigma_i e^{r_i - 1} \tag{9}
$$

$$
f_0 = N_0/N_r \tag{10}
$$

$$
f_i = r_i N_i / N_r \tag{11}
$$

where f_0 and f_i are the empty and occupied site fractions, respectively.

In this paper, all calculations will be based on equation (8). In addition, the following assumptions will be made : the flexibility parameter δ_i is independent of temperature and pressure; the close-packed volume $r_i v^*$ of a molecule is independent of temperature and pressure.

The close-packed volume of a mer is v^* . Then, the total close-packed volume of the system is

$$
V^* = \sum_{i=1}^{k} r_i N_i v^* = r N v^* \qquad (12)
$$

If the volume associated with an empty lattice site (a

POLYMER, 1992, Volume 33, Number 13 2855

hole) is also equal to v^* , the volume of the system is

$$
V = N_r v^* = V^* / f \tag{13}
$$

where

$$
f = \sum_{i=1}^{k} r_i N_i / N_r = \sum_{i=1}^{k} f_i
$$
 (14)

The lattice energy (attractive) that depends only on nearest neighbour interactions is

$$
E = -(z/2)N_r \sum_{i} \sum_{j} p(i, j) \varepsilon_{ij}
$$
 (15)

where ε_{ij} is the pair interaction energy between components i and j , and

$$
\varepsilon_{ij} \begin{cases}\n\neq 0 & \text{(non-bonded mer-mer interactions)} \\
= 0 & \text{(other interactions)}\n\end{cases}
$$
\n(16)

If we assume random mixing of holes and molecules, then the probability of a non-bonded mer-mer interaction^{$12-14$} is

$$
p(\text{mer, mer}) = \left(\sum_{i=1}^{k} q_i N_i\right)^2 / N_q N_r \tag{17}
$$

or in the large z limit becomes

$$
\lim_{z \to \infty} p(\text{mer, mer}) = \left(\sum_{i=1}^{k} r_i N_i / N_r\right)^2 = f^2 \qquad (18)
$$

Thus, the lattice energy is

$$
E = -N_r (z\epsilon/2)f^2 = -rN\epsilon^*f = -rN\epsilon^* (V^*/V) \quad (19)
$$

where ε is the non-bonded mer-mer interaction energy and

$$
\varepsilon^* = z\varepsilon/2 \tag{20}
$$

is the total interaction energy per mer.

The partition function of this system is

$$
Z(T, P) = \sum_{N_0=0}^{\infty} \Omega \exp[-\beta(E + PV)] \qquad (21)
$$

and the Gibbs free energy is equal to

$$
G = -kT \ln Z(T, P) \doteq E + PV - kT \ln \Omega \quad (22)
$$

Using equations (8) , (13) and (19) , G can be expressed as a dimensionless variable:

$$
\tilde{G} = G/rN\varepsilon^*
$$
\n
$$
= -\tilde{\rho} + \tilde{P}\tilde{v} + \tilde{T} \left[(\tilde{v} - 1) \ln(1 - \tilde{\rho}) + \frac{1}{r} \ln \tilde{\rho} + \sum_{i=1}^{k} \left(\frac{\varphi_i}{r_i} \right) \ln \left(\frac{\varphi_i}{\omega_i} \right) \right]
$$
\n(23)

where

$$
\varphi_i = r_i N_i / rN \tag{24}
$$

$$
\tilde{T} = T/T^* \qquad T^* = \varepsilon^* / k \tag{25}
$$

$$
\widetilde{P} = P/P^* \qquad P^* = \varepsilon^*/v^* \tag{26}
$$

$$
\tilde{v} = 1/\tilde{\rho} = V/V^* \tag{27}
$$

The minimum value of the free energy is found in the usual way :

$$
\left. \frac{\partial \vec{G}}{\partial \tilde{v}} \right|_{\tilde{T}, \tilde{P}} = 0 \tag{28}
$$

which yields

$$
\tilde{\rho}^2 + \tilde{P} + \tilde{T}[\ln(1-\tilde{\rho}) + \left(1-\frac{1}{r}\right)\tilde{\rho}] = 0 \quad (29)
$$

when $r \rightarrow \infty$, the equation of state becomes

$$
\tilde{\rho}^2 + \tilde{P} + \tilde{T}[\ln(1-\tilde{\rho}) + \tilde{\rho}] = 0 \tag{30}
$$

Thus, the polymer fluid of sufficiently high molecular weight satisfies a simple corresponding state principle.

If the polymer fluid is monodisperse, i.e. $r_i = r$, $\delta_i = \delta$, $\sigma_i = \sigma$, $\varphi_i = 1$, and the summation of *i* is deprived, then we have

$$
\tilde{G} = -\tilde{\rho} + \tilde{P}\tilde{v} + \tilde{T} \left[(\tilde{v} - 1) \ln(1 - \tilde{\rho}) + \frac{1}{r} \ln(\tilde{\rho}/\omega) \right]
$$
(31)

and

$$
\tilde{\rho}^2 + \tilde{P} + \tilde{T} \left[\ln(1 - \tilde{\rho}) + \left(1 - \frac{1}{r} \right) \tilde{\rho} \right] = 0 \quad (32)
$$

where r is a constant and the number of sites which a *r*-mer occupies and $\omega = r\delta/\sigma e^{r-1}$. Thus, this theory can be reduced to the pure lattice fluid theory of Sanchez and Lacombe⁷ when the polymer fluid is monodisperse.

From the above discussion, it can be shown that our theory is a general theory and the pure lattice fluid theory of Sanchez and Lacombe is only a special case of our theory.

References

- 1 Flory, P. J. 'Principles of Polymer Chemistry', Cornell University Press, Ithaca, 1953
- $\overline{2}$ Flory, P. J., Orwoll, R. A. and Vrij, *A. J. Am. Chem. Soc.* 1964, 86, 3515
- 3 Flory, *P. J. J. Am. Chem. Soc.* 1965, 87, 1833
- 4 Eichinger, B. E. and Flory, P. J. *Trans. Faraday Soc.* 1968, 64, 2035
- 5 Flory, P. J. *Discuss Faraday Soc.* 1970, 7
- 6 McMaster, L. P. *Macromolecules* 1973, 6, 760
- 7 Sanchez, I. C. and Lacombe, *R. H. J. Phys. Chem.* 1976, 80, 2352
- 8 Lacombe, R. H. and Sanchez, *I. C. J. Phys. Chem.* 1976, 80, 2568
- 9 Sanchez, I. C. and Lacombe, R. H. *Macromolecules* 1978, 11, 1145
- 10 Sanchez, I. C. and Balazs, A. C. *Macromolecules* 1989, 22, 2324
- 11 Sanchez, I. C. *Macromolecules* 1991, 24, 908
- 12 Guggenheim, E. A. 'Mixtures', Oxford University Press, London, 1952, Chs X and XI
- 13 Guggenheim, E. A. *Proc. R. Soc. (London) Ser. A* 1944,183, 203
- 14 Guggenheim, E. A. 'Applications of Statistical Mechanics', Oxford University Press, London, 1966, Chs 4 and 7
- 15 Flory, *P. J. .1. Chem. Phys.* 1942, 10, 51